Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

	ФТД.01 Практикум по физико-химическим методам					
	анализа					
	наименование дисциплины (модуля) в соответствии с учебным планом					
Направлен	ние подготовки / специальность					
	04.04.01 Химия					
Направле	нность (профиль)					
таправле						
	04.04.01.02 Аналитическая химия					
Форма об	учения очная					
Гол набор	na 2022					

РАБОЧАЯ ПРОГРАММА ЛИСШИПЛИНЫ (МОЛУЛЯ)

Программу составили	
	попучость инишиэлы фэмилия

1 Цели и задачи изучения дисциплины

1.1 Цель преподавания дисциплины

дать знания о теоретических и методологических основах различных физико-химических методов исследования веществ и материалов; получение практических навыков в проведении физико-химического анализа веществ.

1.2 Задачи изучения дисциплины

- формирование представлений о фундаментальных законах и их роли в физико-химических методах исследования состава и свойств материалов;
 - освоение теоретических основ физико-химического анализа;
- определить область и границы применимости различных физико -химических методов исследования;
- формирование практических навыков по применению полученных знаний в профессиональной деятельности.

1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Код и наименование индикатора достижения компетенции Запланированные результаты обучения по дисциплине						
ПК-1н: Способен планировать работу и выбирать адекватные методы решения научно-исследовательских задач в выбранной области химии, химической						
технологии или смежных с химией науках						

1.4 Особенности реализации дисциплины

Язык реализации дисциплины: Русский.

Дисциплина (модуль) реализуется без применения ЭО и ДОТ.

2. Объем дисциплины (модуля)

Вид учебной работы	Всего, зачетных единиц (акад.час)	1
Контактная работа с преподавателем:	0,5 (18)	
лабораторные работы	0,5 (18)	
Самостоятельная работа обучающихся:	1,5 (54)	
курсовое проектирование (КП)	Нет	
курсовая работа (КР)	Нет	

3 Содержание дисциплины (модуля)

3.1 Разделы дисциплины и виды занятий (тематический план занятий)

			Контактная работа, ак. час.							
№ п/п	Модули, темы (разделы) дисциплины	Занятия лекционного типа		Занятия семинары и/или Практические занятия		нарского типа Лабораторные работы и/или Практикумы		Самостоятельная работа, ак. час.		
		Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	
1. M	етоды анализа определения физико-химических свойств	веществ	1							
	1. Приготовление растворов заданной концентрации. Определение плотности растворов с разными концентрациями с использованием ареометров и денситометра. Определение концентрации раствора неизвестной концентрации по найденным значениям плотности.					2				
	2. Определение вязкости серии растворов с заданными концентрациями. Расчет кинематической и динамической вязкости растворов.					2				
	3. Рефрактометрия. Определение показателя преломления серии растворов. Соотнесение полученных данных с составом.					2				
	4. Калориметрия. Расчет энтальпии растворения, энергии активации и предэкспоненциального множителя в уравнении Френкеля.					2				

 5. Кондуктометрия. Определение удельной электропроводности (удельного электрического сопротивления) солевых растворов. Расчет молярной электропроводности. Определение рН растворов. 6. Измерение поверхностного натяжения методом 				2			
давления в газовом пузырьке.				2			
2. Спектроскопические методы анализа	1	 1	Г	Г	Γ		
1. Спектрофотометрия. Построение электронных спектров поглощения комплексов железа с селективными органическими реагентами. Построение концентрационных зависимостей. Расчет предела обнаружения и диапазона определяемых концентраций. Определение неизвестной концентрации железа в реальных образцах.				2			
2. Люминесценция. Применение комплексных соединений и органических реагентов в люминесцентном методе. Примеры люминесцентных определений примесей в материалах различной природы.				2			
3. Атомно-эмиссионный анализ питьевой и природной воды на содержание тяжелых металлов				2			
4. Проработку теоретического материала.2) Оформление и подготовку к защите лабораторных работ.						54	
Всего				18		54	

4 Учебно-методическое обеспечение дисциплины

4.1 Печатные и электронные издания:

1. Криштафович В. И., Криштафович Д. В., Еремеева Н. В. Физико-химические методы исследования: учебник для студентов высших учебных заведений, обучающихся по направлению подготовки "Товароведение" (квалификация (степень) "бакалавр")(Москва: Дашков и К°).

4.2 Лицензионное и свободно распространяемое программное обеспечение, в том числе отечественного производства (программное обеспечение, на которое университет имеет лицензию, а также свободно распространяемое программное обеспечение):

- 1. Программный пакет Windows Exel для статистической обработки экспериментальных результатов, для расчета функциональных (графических) зависимостей методом МНК.
- 2. Программный пакет для ChemOffice Ultra 11 для для моделирования спектров веществ, используя данные о структуре орбиталей
- 3. Table 3.0. Периодическая система элементов Д.И.Менделеева с возможностью получения исчерпывающей информации о каждом элементе.

4.3 Интернет-ресурсы, включая профессиональные базы данных и информационные справочные системы:

- 1. Степин Б. Д Техника лабораторного эксперимента в химии: Учеб. пособие для вузов. / Б. Д. Степин М.: Химия, 1999. 600 с.
- 2. Рабинович В.А. Краткий химический справочник / В.А. Рабинович, З.Я. Хавин Л.: Химия, 1991.-432 с.
- 3. Лазарев Н.В., Левина Э.Н. (ред.). / Вредные вещества в промышленности. Справочник для химиков. В 3-х томах. Т.1-3. Изд.7, Перераб. и доп.
- 4. Дриц М.Е., Будберг П.Б. / Свойства элементов (Справочник). Москва: Металлургия.
- 5. Открытая энциклопедия по науке о Земле (GeoWiki). –Режим доступа: http://wiki.web.ru

5 Фонд оценочных средств

Оценочные средства находятся в приложении к рабочим программам дисциплин.

6 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

- Рефрактометр Аббе;
- Кондуктометр;

- Мультитест ИПЛ-101, ИПЛ-112;
- Спектрофотометр УФ-видимой области спектра Cary 100 Scan (Varian, США) (ЦКП СФУ);
- Спектрофлюориметр Eclypse (Varian, США) (ЦКП СФУ);
- Капиллярный электрофорез «Капель» (Люмекс, Россия) (ЦКП СФУ).
- Атомно-эмиссионный спектрометр с индуктивно связанной плазмой ICAP 6500, OPTIMA 5300DV (PerkinElmer, США) (ЦКП СФУ);
- Денситометр,
- Спектрофотометр Пульсар со сферической приставкой (Химавтоматика, Россия) (ЦКП СФУ).